Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Biochem Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564095

RESUMO

Chronic kidney disease (CKD) affects more than 10% of people worldwide and is a leading cause of death. However, the pathogenesis of CKD remains elusive. The oxidative stress and mitochondrial membrane potential were detected using Enzyme-linked immunosorbent assay and JC-1 assay. Co-immunoprecipitation, dual-luciferase assay, chromatin IP, RNA IP and RNA pull-down were used to validate the interactions among genes. Exploiting a H2O2-induced fibrosis model in vitro, PUM2 expression was upregulated in Human kidney 2 cell (HK-2) cells, along with reduced cell viability, enhanced oxidative stress, impaired mitochondrial potential, and upregulated expressions of fibrosis-associated proteins. While PUM2 knockdown reversed the H2O2-induced injury in HK-2 cells. Mechanically, Wnt/ß-catenin pathway activated PUM2 transcription via TCF4. It was further identified that Wnt/ß-catenin pathway inhibited YME1L expression through PUM2-mediated destabilizing of its mRNA. PUM2 aggravated H2O2-induced oxidative stress, mitochondrial dysfunction, and renal fibrosis in HK-2 cell via suppressing YME1L expression. Our study revealed that Wnt/ß-catenin aggravated renal fibrosis by activating PUM2 transcription to repress YME1L-mediated mitochondrial homeostasis, providing novel insights and potential therapeutic targets for the treatment of kidney fibrosis.

2.
Drug Des Devel Ther ; 18: 979-989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562519

RESUMO

As a continuous process comprising bone resorption and formation, bone remodeling, plays an essential role in maintaining the balance of bone metabolism. One type of metabolic osteopathy is osteoporosis, which is defined by low bone mass and deteriorating bone microstructure. Osteoporosis patients are more likely to experience frequent osteoporotic fractures, which makes osteoporosis prevention and treatment crucial. A growing body of research has revealed that exosomes, which are homogenous vesicles released by most cell types, play a major role in mediating a number of pathophysiological processes, including osteoporosis. Exosomes may act as a mediator in cell-to-cell communication and offer a fresh perspective on information sharing. This review discusses the characteristics of exosomes and outlines the exosomes' underlying mechanism that contributes to the onset of osteoporosis. Recent years have seen a rise in interest in the role of exosomes in osteoporosis, which has given rise to innovative therapeutic approaches for the disease prevention and management.


Assuntos
Exossomos , Osteoporose , Humanos , Exossomos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osso e Ossos/metabolismo , Remodelação Óssea
3.
J Cell Mol Med ; 28(7): e18204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506068

RESUMO

Podocyte apoptosis exerts a crucial role in the pathogenesis of DN. Recently, long noncoding RNAs (lncRNAs) have been gradually identified to be functional in a variety of different mechanisms associated with podocyte apoptosis. This study aimed to investigate whether lncRNA Glis2 could regulate podocyte apoptosis in DN and uncover the underlying mechanism. The apoptosis rate was detected by flow cytometry. Mitochondrial membrane potential (ΔΨM) was measured using JC-1 staining. Mitochondrial morphology was detected by MitoTracker Deep Red staining. Then, the histopathological and ultrastructure changes of renal tissues in diabetic mice were observed using periodic acid-Schiff (PAS) staining and transmission electron microscopy. We found that lncRNA Glis2 was significantly downregulated in high-glucose cultured podocytes and renal tissues of db/db mice. LncRNA Glis2 overexpression was found to alleviate podocyte mitochondrial dysfunction and apoptosis. The direct interaction between lncRNA Glis2 and miR-328-5p was confirmed by dual luciferase reporter assay. Furthermore, lncRNA Glis2 overexpression alleviated podocyte apoptosis in diabetic mice. Taken together, this study demonstrated that lncRNA Glis2, acting as a competing endogenous RNA (ceRNA) of miRNA-328-5p, regulated Sirt1-mediated mitochondrial dysfunction and podocyte apoptosis in DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , Doenças Mitocondriais , Podócitos , RNA Longo não Codificante , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , RNA Longo não Codificante/genética , MicroRNAs/genética , Podócitos/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fatores de Transcrição , Apoptose/genética , Doenças Mitocondriais/patologia , Glucose
4.
World J Diabetes ; 15(2): 260-274, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38464366

RESUMO

BACKGROUND: Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy (DN). The regulatory relationship between long noncoding RNAs (lncRNAs) and podocyte apoptosis has recently become another research hot spot in the DN field. AIM: To investigate whether lncRNA protein-disulfide isomerase-associated 3 (Pdia3) could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism. METHODS: Using normal glucose or high glucose (HG)-cultured podocytes, the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress (ERS) were explored. LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction. Relative cell viability was detected through the cell counting kit-8 colorimetric assay. The podocyte apoptosis rate in each group was measured through flow cytometry. The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay. Finally, western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p. RESULTS: The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes. Next, lncRNA Pdia3 was involved in HG-induced podocyte apoptosis. Furthermore, the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p. LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes. CONCLUSION: Taken together, this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p, which might provide a potential therapeutic target for DN.

6.
Appl Microbiol Biotechnol ; 108(1): 125, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229330

RESUMO

The gut microbiota is the largest and most complex microecosystem in animals. It is influenced by the host's dietary habits and living environment, and its composition and diversity play irreplaceable roles in animal nutrient metabolism, immunity, and adaptation to the environment. Although the gut microbiota of red deer has been studied, the composition and function of the gut microbiota in Gansu red deer (Cervus elaphus kansuensis), an endemic subspecies of red deer in China, has not been reported. In this study, the composition and diversity of the gut microbiome and fecal metabolomics of C. elaphus kansuensis were identified and compared for the first time by using 16S rDNA sequencing, metagenomic sequencing, and LC-MS/MS. There were significant differences in gut microbiota structure and diversity between wild and farmed C. elaphus kansuensis. The 16S rDNA sequencing results showed that the genus UCRD-005 was dominant in both captive red deer (CRD) and wild red deer (WRD). Metagenomic sequencing showed similar results to those of 16S rDNA sequencing for gut microbiota in CRD and WRD at the phylum and genus levels. 16S rDNA and metagenomics sequencing data suggested that Bacteroides and Bacillus might serve as marker genera for CRD and WRD, respectively. Fecal metabolomics results showed that 520 metabolites with significant differences were detected between CRD and WRD and most differential metabolites were involved in lipid metabolism. The results suggested that large differences in gut microbiota composition and fecal metabolites between CRD and WRD, indicating that different dietary habits and living environments over time have led to the development of stable gut microbiome characteristics for CRD and WRD to meet their respective survival and reproduction needs. KEY POINTS: • Environment and food affected the gut microbiota and fecal metabolites in red deer • Genera Bacteroides and Bacillus may play important roles in CRD and WRD, respectively • Flavonoids and ascorbic acid in fecal metabolites may influence health of red deer.


Assuntos
Bacillus , Cervos , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bacillus/genética , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
7.
ACS Appl Mater Interfaces ; 16(4): 4540-4549, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227931

RESUMO

A proton exchange ionomer is one of the most important components in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFCs). It acts as both a proton conductor and a binder for nanocatalysts and carbon supports. The structure and the wetting conditions of the MEAs have a great impact on the microenvironment at the three-phase interphases in the MEAs, which can significantly influence the electrode kinetics such as the oxygen reduction reaction (ORR) at the cathode. Herein, by using the Pt(111)|X ionomer interface as a model system (X = Nafion, Aciplex, D72), we find that higher drying temperature lowers the onset potential for sulfonate adsorption and reduces apparent ORR current, while the current wave for OHad formation drops and shifts positively. Surprisingly, the intrinsic ORR activity is higher after properly correcting the blocking effect of Pt active sites by sulfonate adsorption and the poly(tetrafluoroethylene) (PTFE) skeleton. These results are well explained by the reduced water activity at the interfaces induced by the ionomer/PTFE, according to the mixed potential effect. Implications for how to prepare MEAs with improved ORR activity are provided.

8.
Transpl Immunol ; 82: 101983, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184215

RESUMO

BACKGROUND: Immune response plays a vital role in the initiation and development of chronic kidney disease (CKD). Detailed mechanisms and specific immune-related biomarkers of CKD need further clarification. We aimed to identify and characterize immune-related infiltrates that are implicated in the CKD development using a bioinformatics method. METHODS: The expression profiles of GSE66494 dataset were acquired from the Gene Expression Omnibus (GEO) database. Patients with CKD were divided into low- vs. high-immune subtypes based on their immune score. Based on such analysis, we identified differentially expressed genes (DEGs) of low- and high-immune subtypes. The weight gene co-expression network analysis (WGCNA) was used to identify immune-associated modules between two subtypes. The gene set enriched (GSEA) and variation (GSVA) analyses were correlated with their functional types using the molecular complex detection (MCODE) method. Finally, the immune infiltration landscape between subtypes was revealed using the xCell algorithm. RESULTS: The total number of 131 differentially expressed immune-related genes (DEIRGs) were identified between low- vs. high-immune subtypes. Out of them GSEA/GSVA results identified and enriched immune- and inflammation-related pathways. In particular, GSVA results indicated that immune-related pathways were activated in high-immune subgroups. The core DEIRG genes that were identified to be involved in CKD development included: the protein tyrosine phosphatase receptor type C (PTPRC; also known as CD45) regulating cell growth and differentiation, an early activation marker (CD69), co-receptor for T cell receptor (CD8A), and T cell co-stimulatory signal (CD28). These core DEIRD genes were further verified by the GSE96804 dataset. We also found a higher proportion of immune cells infiltrating the high-immune subgroup. Furthermore, the four core genes were positively correlated with most immune cell types. CONCLUSION: Among 131 DEIRG genes, four genes (PTPRC, CD69, CD8A, and CD28) were identified as potential biomarkers associated with the immune cell infiltration in CKD patients, which may provide a novel insight for immunotherapy for CKD.


Assuntos
Antígenos CD28 , Insuficiência Renal Crônica , Humanos , Algoritmos , Diferenciação Celular , Proliferação de Células , Insuficiência Renal Crônica/genética
9.
Curr Med Imaging ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38204241

RESUMO

BACKGROUND: While cerebral cavernous malformations (CCMs) have been extensively described, few reports have described the imaging appearance of giant CCMs (GCCMs). OBJECTIVE: To describe the imaging characteristics of GCCMs and study the reasons for preoperative misdiagnosis. METHODS: We retrospectively analyzed the data of 12 patients (5 men, 7 women; mean age, 35.23 ± 12.64 years) with histopathologically confirmed GCCMs. Two radiologists analyzed the CT (n = 12) and MRI (n = 10) features: location, number, size, shape, boundary, signal intensity, and enhancement. RESULTS: The sellar region, cerebral hemisphere, skull bone, and ventricle were involved in 5, 4, 2, and 1 patients, respectively. Three tumors were irregularly shaped, while nine were oval. Eleven lesions showed slightly high- and/or high-density on CT; 1 lesion appeared as a low-density cyst. Calcifications were found in 11 lesions. Four tumors showed uniform hypointensity on T1-weighted imaging (T1WI) and hyperintense signals on T2-weighted imaging (T2WI). Six tumors showed mixed low-, equal-, and high-intensity signals on T1WI and T2WI. Noticeable contrast enhancement and gradual strengthening were noted on T1WI. Ten lesions showed hemorrhage and hemosiderin deposition. The GCCMs were wrongly diagnosed as cartilage-derived tumors/ meningioma (3 patients); tumor and hematoma (2 patients each); and pituitary tumor/ meningioma, chondroma, chordoma, ependymoma, and macroadenoma (1 patient each). CONCLUSIONS: GCCMs present as an oval mass with slightly high- and/or high-density calcifications on CT and show hemorrhage and hemosiderin accumulation on MRI. Therefore, slightly high- and/or high-density calcification and hemosiderin accumulation are critical clinical characteristics of GCCMs.

10.
Chem Biol Drug Des ; 103(1): e14380, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890873

RESUMO

Labeled with pluripotent potential, the transplantation of bone marrow mesenchymal stem cells (BMSCs) is considered as a promising strategy for treating osteoporosis (OP). Melatonin (MEL) has been investigated to be an essential regulator involved in bone metabolism, as well as BMSCs differentiation. Circular RNAs (circRNAs) are a unique kind of non-coding RNA and play an important regulatory role in OP. However, whether circRNAs are implicated in the effects of MEL on BMSCs osteogenic differentiation remains largely indeterminate. Expression of circ_0005753 in human BMSCs with MEL treatment, clinical specimens diagnosed with OP, either with ovariectomy (OVX)-induced mice, was measured by RT-qPCR. Western blot was conducted to analyze protein levels of osteogenesis-related molecules (Opg, RUNX2, ALP, BMP4) and TXNIP. RNA immunoprecipitation (RIP) and RNA pull-down assays were performed to validate the binding relationship among circ_0005753, PTBP1, and TXNIP. Alkaline phosphatase (ALP) and alizarin red staining (ARS) were performed to evaluate osteogenic capacity of BMSCs. OP mouse model was established by ovariectomy, as evaluated pathologic changes via hematoxylin-eosin (HE), Masson, and Immunohistochemistry (IHC) staining. Expression of circ_0005753 was remarkably decreased during MEL-induced osteogenic differentiation of BMSCs. Interestingly, not only circ_0005753 knockdown significantly promoted osteogenic differentiation of BMSCs, but circ_0005753 overexpression also weakened osteogenic differentiation induced by MEL treatment. Mechanistically, circ_0005753 maintained the stabilization of TXNIP mRNA via recruiting PTBP1. Additionally, reinforced circ_0005753 abrogated MEL-mediated protective effects on OP pathogenesis in a mouse model. This work shows that MEL facilitates osteogenic differentiation of BMSCs via the circ_0005753/PTBP1/TXNIP axis, which may shed light on the development of a novel therapeutic strategy to prevent OP.


Assuntos
Melatonina , Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Feminino , Camundongos , Humanos , Animais , Osteogênese , Melatonina/farmacologia , RNA Circular/genética , RNA Circular/análise , RNA Circular/metabolismo , Células Cultivadas , Osteoporose/tratamento farmacológico , Osteoporose/genética , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , MicroRNAs/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/análise , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/análise , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/farmacologia , Proteínas de Transporte/metabolismo
12.
Anal Chem ; 96(1): 67-75, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153001

RESUMO

Origins of pH effects on the kinetics of electrocatalytic reactions involving the transfer of both protons and electrons, including the hydrogen evolution reaction (HER) considered in this study, are heatedly debated. By taking the HER at Au(111) in acid solutions of different pHs and ionic concentrations as the model systems, herein, we report how to derive the intrinsic kinetic parameters of such reactions and their pH dependence through the measurement of j-E curves and the corresponding kinetic simulation based on the Frumkin-Butler-Volmer theory and the modified Poisson-Nernst-Planck equation. Our study reveals the following: (i) the same set of kinetic parameters, such as the standard activation Gibbs free energy, charge transfer coefficient, and Gibbs adsorption energy for Had at Au(111), can simulate well all the j-E curves measured in solutions with different pH and temperatures; (ii) on the reversible hydrogen electrode scale, the intrinsic rate constant increases with the increase of pH, which is in contrast with the decrease of the HER current with the increase of pH; and (iii) the ratio of the rate constants for HER at Au(111) in x M HClO4 + (0.1 - x) M NaClO4 (pH ≤ 3) deduced before properly correcting the electric double layer (EDL) effects to the ones estimated with EDL correction is in the range of ca. 10 to 40, and even in a solution of x M HClO4 + (1 - x) M NaClO4 (pH ≤ 2) there is a difference of ca. 5× in the rate constants without and with EDL correction. The importance of proper correction of the EDL effects as well as several other important factors on unveiling the intrinsic pH-dependent reaction kinetics are discussed to help converge our analysis of pH effects in electrocatalysis.

13.
EBioMedicine ; 99: 104916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101297

RESUMO

BACKGROUND: Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS: We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS: We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION: Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING: The full list of funding can be found at the Acknowledgements section.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Animais , Camundongos , Virulência , Células Epiteliais , Mucosa Nasal
14.
Photodiagnosis Photodyn Ther ; 44: 103799, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696316

RESUMO

BACKGROUND: To explore the value of Optical Coherence Tomography Angiography (OCTA) metrics in the early diagnosis of vascular complications in diabetes. METHODS: All participants underwent OCTA with a swept-source OCT device. Automated measurements of the foveal avascular zone (FAZ) area, vessel density (VD), and blood flow density (BFD) of both 3 × 3 and 6 × 6 windows were then obtained after a quality check. RESULTS: Diagnostic models based on multiple risk factors were developed separately for diabetic retinopathy and carotid atherosclerosis using random forest and multivariate logistic regression methods. The addition of specific OCTA metrics improved the diagnostic prediction of DR compared with the models of risk factors alone (Inner Retinal Blood Flow Density in 3 × 3 window, IRBFD; Brier score 0.124 vs. 0.149; AUC, 0.887 vs. 0.836) (Central Retinal Blood Flow Density in 3 × 3 window, CRBFD; Brier score 0.142 vs. 0.149; AUC, 0.851 vs. 0.836). Adding diabetic peripheral vascular disease (DPVD) indicator improved the prediction of carotid atherosclerosis (Brier score, 0.180 vs. 0.192; AUC, 0.802 vs. 0.781. The FAZ in the 3 × 3 window also achieved this effect when targeting only T2DM patients (AUC, 0.797 vs. 0.766; Brier score, 0.183 vs. 0.195). CONCLUSIONS: Focusing on IRBFD and CRBFD in the 3 × 3 window of OCTA allows for a more sensitive prediction of the occurrence of DR in diabetic patients. Meanwhile, the quantitative microvascular information provided by OCTA and the occurrence of DPVD may be crucial for diagnosing carotid atherosclerosis. For T2DM patients, we also propose the possibility of FAZ in the 3 × 3 window as a potential diagnostic indicator.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Fotoquimioterapia , Humanos , Retinopatia Diabética/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Vasos Retinianos/diagnóstico por imagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Diabetes Mellitus Tipo 2/complicações
15.
Pharmaceutics ; 15(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765266

RESUMO

In this study, we employed organic and inorganic dyes that have fluorescence under visible or near-infrared light region to stain human umbilical cord (Huc) mesenchymal stem cell (MSC)-, HEK293T cell- and HGC cell-derived small extracellular vesicles (sEVs), and then tracked their fluorescence signals in human gastric cancer xenografted murine models. Several biological characteristics were examined and compared when different dye-stained sEVs in the same tumor model or the same dye-stained sEVs between different tumor models were applied, including sEVs circulation in the blood, biodistribution of sEVs in major organs, and time-dependent tumor accumulation of sEVs. The results demonstrated that distinct tumor accumulation features were presented by sEVs if labeled by different fluorescent dyes, while sEVs derived from different cell lines showed homologous blood circulation and tumor accumulation. To conclude, although fluorescence imaging remains a reliable way to trace sEVs, single staining of sEVs membrane should be obviated in future work when examining the biological fate of sEVs.

16.
J Reprod Immunol ; 159: 104137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625338

RESUMO

Recent research revealed the pathogenic role of B cells in the pathogenesis of polycystic ovary syndrome (PCOS), while the Tfh cell plays a critical role in the B cell mediated autoantibody production and humoral immunity, but had not been investigated in PCOS patients. The frequency of Tfh and B cell subsets (Tfh1, Tfh2, Tfh17, naïve B, memory B, and plasma cells) in the peripheral blood of 21 PCOS patients and 15 healthy controls were investigated by flow cytometry. And the levels of follicle-stimulating hormone, luteinizing hormone, testosterone, prolactin and estradiol progesterone were measured by using the immunoluminescence method. Also, the associations between these hormone levels and Tfh cell subsets or B cell subsets were analyzed. No significant difference was observed in total Tfh cells between 21 PCOS patients and 15 healthy controls (p > 0.05). But the percentages of Tfh2 and plasma cells were significantly higher in 21 PCOS patients compared to 15 healthy controls (p < 0.05). In contrast, the frequency of Tfr cells and Tfr/Tfh2 ratio were significantly lower than healthy controls (p < 0.01). Importantly, among these cells, only the percentage of Tfh2 cells was positively correlated with the levels of testosterone (r = 0.513, p = 0.018). And the percentage of Tfr cells and Tfr/Tfh2 ratio were also positively correlated with the levels of testosterone (r = 0.567, p = 0.007; r = 0.434, p = 0.05) and prolactin (r = 0.511, p = 0.018; r = 0.490, p = 0.024). These new findings provide unique insights into dysregulated Tfh/Tfr cells in mediating the immunopathogenesis of PCOS patients.


Assuntos
Subpopulações de Linfócitos B , Síndrome do Ovário Policístico , Feminino , Humanos , Prolactina , Linfócitos B , Testosterona
17.
Proc Natl Acad Sci U S A ; 120(34): e2307307120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579163

RESUMO

It is revealed herein that surface-charging behaviors of the two electrodes constituting an electrochemical cell cannot be described independently by their respective electric double-layer (EDL) properties. Instead, they are correlated in such a way that the surface-charging behavior of each electrode is determined by the EDL and the reaction kinetics at both electrodes. Two fundamental equations describing the correlated surface-charging behaviors are derived, and approximate analytical solutions are obtained at low and high current densities, respectively, to facilitate transparent understanding. Important implications of the presented conceptual analysis for theoretical and computational electrochemistry are discussed. A strategy of modulating the activity of one electrode by tuning EDL parameters of the other in a two-electrode electrochemical cell is demonstrated.

18.
J Cell Mol Med ; 27(17): 2495-2506, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395157

RESUMO

To explore the underlying mechanism of lncRNA MALAT1 in the pathogenesis of diabetic cardiomyopathy (DCM). DCM models were confirmed in db/db mice. MiRNAs in myocardium were detected by miRNA sequencing. The interactions of miR-185-5p with MALAT1 and RhoA were validated by dual-luciferase reporter assays. Primary neonatal cardiomyocytes were cultured with 5.5 or 30 mmol/L D-glucose (HG) in the presence or absence of MALAT1-shRNA and fasudil, a ROCK inhibitor. MALAT1 and miR-185-5p expression were determined by real-time quantitative PCR. The apoptotic cardiomyocytes were evaluated using flow cytometry and TUNEL staining. SOD activity and MDA contents were measured. The ROCK activity, phosphorylation of Drp1S616 , mitofusin 2 and apoptosis-related proteins were analysed by Western blotting. Mitochondrial membrane potential was examined by JC-1. MALAT1 was significantly up-regulated while miR-185-5p was down-regulated in myocardium of db/db mice and HG-induced cardiomyocytes. MALAT1 regulated RhoA/ROCK pathway via sponging miR-185-5p in cardiomyocytes in HG. Knockdown of MALAT1 and fasudil all inhibited HG-induced oxidative stress, and alleviated imbalance of mitochondrial dynamics and mitochondrial dysfunction, accompanied by reduced cardiomyocyte apoptosis. MALAT1 activated the RhoA/ROCK pathway via sponging miR-185-5p and mediated HG-induced oxidative stress, mitochondrial damage and apoptosis of cardiomyocytes in mice.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Estresse Oxidativo , Glucose/toxicidade , Glucose/metabolismo , Mitocôndrias/metabolismo
20.
J Diabetes Investig ; 14(9): 1056-1069, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315165

RESUMO

BACKGROUND: Hyperglycemia accelerates the development of diabetic nephropathy (DN) by inducing renal tubular injury. Nevertheless, the mechanism has not been elaborated fully. Here, the pathogenesis of DN was investigated to seek novel treatment strategies. METHODS: A model of diabetic nephropathy was established in vivo, the levels of blood glucose, urine albumin creatinine ratio (ACR), creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione (GSH), and iron were measured. The expression levels were detected by qRT-PCR and Western blotting. H&E, Masson, and PAS staining were used to assess kidney tissue injury. The mitochondria morphology was observed by transmission electron microscopy (TEM). The molecular interaction was analyzed using a dual luciferase reporter assay. RESULTS: SNHG1 and ACSL4 were increased in kidney tissues of DN mice, but miR-16-5p was decreased. Ferrostatin-1 treatment or SNHG1 knockdown inhibited ferroptosis in high glucose (HG)-treated HK-2 cells and in db/db mice. Subsequently, miR-16-5p was confirmed to be a target for SNHG1, and directly targeted to ACSL4. Overexpression of ACSL4 greatly reversed the protective roles of SNHG1 knockdown in HG-induced ferroptosis of HK-2 cells. CONCLUSIONS: SNHG1 knockdown inhibited ferroptosis via the miR-16-5p/ACSL4 axis to alleviate diabetic nephropathy, which provided some new insights for the novel treatment of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas , Ferroptose , Hiperglicemia , RNA Longo não Codificante , Animais , Camundongos , Creatinina , Nefropatias Diabéticas/patologia , Ferroptose/genética , Hiperglicemia/complicações , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...